
Python Advanced Course
 Part I

Stefano Alberto Russo

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

● Part I: Object Oriented Programming
○ What is OOP?
○ Logical Example
○ Attributes and methods
○ Why to use objects
○ Defining objects

● Part II: Improving your code
○ Extending objects
○ Lambdas
○ Comprehensions
○ Iterables
○ Properties

Outline
● Part III: Exceptions

○ What are exceptions?
○ Handling exceptions
○ Raising exceptions
○ Creating custom exceptions

● Part IV: logging and testing
○ The Python logging module
○ Basics about testing
○ The Python unit-testing module
○ Test-driven development

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

● Part I: Object Oriented Programming
○ What is OOP?
○ Logical Example
○ Attributes and methods
○ Why to use objects
○ Defining objects

● Part II: Improving your code
○ Extending objects
○ Lambdas
○ Comprehensions
○ Iterables
○ Properties

Outline
● Part III: Exceptions

○ What are exceptions?
○ Handling exceptions
○ Raising exceptions
○ Creating custom exceptions

● Part IV: logging and testing
○ The Python logging module
○ Basics about testing
○ The Python unit-testing module
○ Test-driven development

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

It is a programming paradigm. Things change quite a lot form “classic”
programming. Objects are “entities” which model the world around us.

Objects are defined as classes

Object Oriented Programming
→ What is it?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Living organisms

Reptiles

Mammals

Bipeds Quadrupeds

Object Oriented Programming
→ What is it?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Glasses

Alcoholic Content Alcohol Free
Content

Wine Liquor

WhiteRed

Coffee Beverages

Espresso American

Object Oriented Programming
→ What is it?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Glasses

Glass Plastic

Coloured Transparent

PaintedCompound

Recyclable Not
Recyclable

Object Oriented Programming
→ What is it?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

It is a programming paradigm. Things change quite a lot form “classic”
programming. Objects are “entities” which model the world around us.

Objects are defined as classes.

To use objects, we need to create an instance of their class.

Objects can have:
- attributes (variables)
- methods (functions)

Object Oriented Programming
→ What is it?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Person Class

- name

- say_hi()
 print('Hello!')

Person Class instance

- name = Mario

- say_hi()
 print('Hello!')

Instantiation*

Object Oriented Programming
→ Logical Example

*Also known as construction or initialization

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Person Class

- name

- say_hi()
 print('Hello!')

Person Class instance

- name = Mario

- say_hi()
 print('Hello!')

Person Class instance

- name = Lucia

- say_hi()
 print('Hello!')

Object Oriented Programming
→ Logical Example

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Person Class

- name

- say_hi()
 print('Hello!')

Person Class instance

- name = Mario

- say_hi()
 print('Hello!')

Person Class instance

- name = Lucia

- say_hi()
 print('Hello!')

Attribute (variabile)

Funcion (method)

Object Oriented Programming
→ Logical Example

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Object Oriented Programming
→ Class / instance attributes and methods

Person Class

- name

- say_hi()
 print('Hello!')

By default, attributes and methods depend on the instance of the the class: they
behave differently for each instance.

However, if they don’t have to, then they can be
defined as class or static.

For example, the say_hi() function can be be
defined as a class method, as it produce the same
result regardless of the instance. If instead we
wanted to make the say_hi() function to include
the name of the person, then we couldn’t.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

We use object for mainly two reasons:

- The allow to represent vey well hierarchies (and to exploit common
characteristics between them)

- Once instantiated, the allow to easily hold the status (without having to
rely on external support data structures)

Object Oriented Programming
→ Why to use objects

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

In Python there is a well defined styling convention:

- lowercase characters and underscores for variables and the object instances

- CamelCase for the class names

Moreover, double underscores before and after the name of a method mean that
that method is exclusively for internal (private) use, as for the string representation
(__str__) or the initiator of the object (__init__).

→ They are commonly called “magic methods”.

Object Oriented Programming
→ Conventions

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Object Oriented Programming
→ In Python everything is an object

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

examples.py examples.py

Object Oriented Programming
→ In Python everything is an object

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

examples.py examples.py

Operation (function, method) which
when executed returns a result

Operation (function, method) which when executed
changes the object, does not return anything!

Object Oriented Programming
→ Parenthesis: in-place operations

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Object Oriented Programming
→ Defining objects

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

instantiation

Object Oriented Programming
→ Defining objects

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Object Oriented Programming
→ Defining objects

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

“self” means “myself”, “myself class
instance”. It is mandatory in every
instance method, even if not used.

Object Oriented Programming
→ Defining objects The “init” function is responsible for

initializing the object. If it is not defined, the
default one is used, which does nothing.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Object Oriented Programming
→ Defining objects

- To define class methods, use the @classmethod decorator. They have
the “cls” as first argument instead of the “self”

- To define static methods, use the @staticmethod decorator. They do
not have any special argument (no “self” nor “cls”).

→ A decorator is something placed above a function which “wraps”
the function and tells it to behave in a particular way

- To define static/class attributes, define them in the body of the class

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Object Oriented Programming
→ Defining objects

The “init” function is a magic method.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Object Oriented Programming
→ Magic methods

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py
The __str__ funcion is a magic
method as well, and it is responsible
for the string representation of the
object (i.e. when you print it)

Object Oriented Programming
→ Magic methods

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

objects.py

Instance method (function)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

End of part I
→ Questions?

Next: exercise 1

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Exercise 1
We want to write a predictive model for monthly shampoo sales.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Exercise 1
We want to write a predictive model for monthly shampoo sales.

Our model is extremely simple:

- given a window of n

- the sales at t+1 are given by:

- the average increment computed over the previous n months

- summed to the last point (t) of the window

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Let’s chose to use 3 months for the prediction (n=3) and say that we want to
predict the sales for December (t+1).

We know that sales for September (t-2), October (t-1) and November (t) have
been, respectively, of 50, e 52 e 60 units.

Month Step Sales

September t-2 50

October t-1 52

November t (now) 60

December t+1 ?

Exercise 1
→ Example

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Let’s chose to use 3 months for the prediction (n=3) and say that we want to
predict the sales for December (t+1).

We know that sales for September (t-2), October (t-1) and November (t) have
been, respectively, of 50, e 52 e 60 units.

Month Step Sales

September t-2 50

October t-1 52

November t (now) 60

December t+1 (2+8)/2 + 60 = 65

Exercise 1
→ Example

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Exercise 1
The IncrementModel() class must have a fit() method (which does nothing)
and a predict() method. Both methods must take a “data” argument.

class IncrementModel():

 def __init__(self, window)
 self.window = window

 def fit(self, data):

 # Not implemented
 pass

 def predict(self, data):

 # Compute and return the prediction
 prediction = ...
 return prediction

excercise.py

